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The ground-state wave function and energy of a finite system of interacting fermions are expanded in 
terms of multiple-particle excitations on an uncorrelated zero-order state. The resulting set of coupled 
equations constitutes a systematic variational generalization of Hartree-Fock theory. Comparison is made 
with many-body perturbation theory and it is shown that to any order the theory incorporates an infinite 
number of perturbation theory terms. Solutions of the equations for ground-state atomic systems are dis
cussed and related to previous work using many-body perturbation theory. It is shown that the sums of 
perturbation terms necessary for convergence are automatically included in the equations for two-particle 
excitations. Application of the equations to open-shell atoms is described. 

I. INTRODUCTION 

MANY systems of interacting fermions are well 
approximated by uncorrelated wave functions 

and, in particular, by determinants of single-particle 
states determined by Hartree-Fock theory. It is natural 
to attempt to expand the true wave function for such 
systems in multiple-particle excitations on the zero-
order approximation. We present here such a systematic 
expansion which corresponds to including firstly one-
particle excitations, secondly two-particle excitations, 
and, in succeeding orders, excitations of more and more 
particles. The magnitudes of the excitations are deter
mined by a variational approach. The resulting coupled 
equations are derived in Sec. II. Similar equations were 
previously derived by Nesbet1; our equations differ 
from his in that they show the explicit dependence 
upon the potential V which is used to determine the 
single-particle states for the expansion of the wave 
function | \f). However, the chief advance in this paper 
lies in the identification and approximation of those 
terms which were shown to be important in a previous 
calculation of the ground state of the beryllium atom 
using many-body perturbation theory.2 Section II also 
contains a treatment of the effect of using the Hartree-
Fock potential and the approximate inclusion of three-
particle and higher excitations. 

In Sec. I l l the solutions of the coupled equations are 
discussed and related to the beryllium calculation.2 In 
that calculation it was necessary to include high orders 
in the perturbation expansion. It is shown in Sec. I l l 
that the important infinite sums of perturbation terms 
are automatically included in the coupled equations 
for two-particle excitations. Application of the equa
tions to open-shell atoms is described at the end of 
Sec. III. 

* Work was supported by the U. S. Air Force Office of Scientific 
Research, Grant No. AF0SR-13-63, and the U. S. Atomic 
Energy Commission. 
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1 R. K. Nesbet, Phys. Rev. 109, 1632 (1958). 
2 H. P. Kelly, Lawrence Radiation Laboratory Report UCRL-

10471, 1962 (unpublished), and Phys. Rev. 131, 684 (1963). 

II. THE COUPLED EQUATIONS 

1. Derivation 

In order to solve the equation 

ff|*>=E|*>, (1) 

both H and |^) are expanded in terms of a complete 
set of single-particle states \n) which are determined 
from the eigenvalue equation 

(T+V)\n)=en\n). 

The operator T represents the one-body operators of 
the Hamiltonian. In the atomic case, 

T=-h2V2/2m~Ze2/r. 

The potential V is a one-body potential which approxi
mately accounts for the effects of the interacting 
femions. The particular choice of V is arbitrary except 
that it must be Hermitian; it is often chosen to be the 
Hartree-Fock potential. 

The Hamiltonian H in second-quantized form is 

a a,b,c,d 

-UHV\aWVa. (2) 
a,b 

The sums are taken over all the single-particle states. 
In the second summation only distinct matrix elements 
are included; for example, (ba\v\dc) is not distinct from 
(ab| v\ cd).z It is assumed for simplicity that the ground-
state wave function \\}/) may be approximated by an 
unperturbed solution | <£0) which is a single determinant 
composed of the N states \n) which are lowest in 
energy. When it is necessary to express the unperturbed 
state | $o) as a linear combination of determinants, the 
following approach is still applicable, but it is then 
necessary to consider correction terms for each of the 
determinants and the equations become more lengthy. 

The ground-state wave function is expanded as 

|*>=|*o>+Z/(*;«)^«l^o> 

+ E /(**';aPWvSwaI*o>+--- • (3) 
3 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
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The states labeled k are excited states and not occupied 
in | <£o). The states labeled with Greek letters are states 
which are occupied in |<£0) and are called unexcited 
states. An unoccupied, unexcited state is called a hole 
state. In all the sums only distinct terms are included. 
Terms which differ only in permutations of the excited 
states or the hole states are not distinct. 

When Eqs. (2) and (3) are substituted into Eq. (1) 
an infinite set of coupled equations is obtained by 
equating terms with the same single-particle states. 
It is important in the appreciation of the theoretical 
basis of these equations to realize that this procedure 
is equivalent to a variational approach where the fs 
are determined by minimizing (\(/\E\^) subject to the 
constraint (^|^)=const. Anticipating the rapid con
vergence of the approximation scheme, the following 
discussion is limited to one-particle and two-particle 
excitations. Higher order excitations are discussed in 
Sec. II.3. 

The first equation in the system is obtained by taking 
the |<£>o) component of the result of inserting Eqs. (2) 
and (3) into Eq. (1): 

E €„+ E «7*)«M7*>- E <T| V\y) 

+H{i:(<xy\v\(hU)-{a\V\k)}f(k;a) 

+ E (a0\v\(kk'U)f(kk';af3) = E, (4) 
a^,k,k' 

where ((ab) ex | v\cd)—(ab\v\ cd)—(ba \v\cd). The 7/̂ 77 a | <£0) 
component yields 

(ek+ £ en~ea)f(k;a)+ E <(*y)«M"y>-<*| V\a) 
n=l 7=1 

+ E <(Y*)«M *'«>/(*'; T) 
k' ,y9^oc 

+Z{Z((hU\v\k'y)-(k\V\k'))f(k';a) 
k' y^a 

- E {U(y^Mad)-(y\V\a))f(k;y) 

+ Z{Z<(76)«|»|7«>-<7l^lT>}/(ft;«) 

+ E <G*y)«M*'a>/(ft*';0y) 

+ JL{'E((ySUv\k'S)-(y\V\k')}f(kk';crY) 
k',y 8^a 

+ E ((ky)e4v\k'k")f(k'k";<ry) = Ef(k;a). (5) 
ft',*",7 

The third equation in the series is obtained by multi
plying Eq. (1) from the left by ($0|i?«W*Mft. The 

> A. M. S E S S L E R 

result is 
N 

(€*+€*'+ E cn—ea-~ep)f(kk';al3) 
n=l 

+ H {T. ((yS)^\v\yi)-{y\V\y)}f{kk';a0) 

+<(*ftO«M<#>+ E <(ftft')«|.H*"*'">/(*"*,";«s9) 

+ E ((yk'U\v\k'W(kk";ay) 

+ Z((k'yU\v\ak'y(kk";yfi) 
y^a 

+ E { E ((yk%x\v\yk")-{k'\V\k")}f(kk";al3) 
k" y7*-ct,P 

+ E ((kyUv\k"P)f(k'k";ay) 

+ E <(7*)«M*"«>/(*"*'; 7/9) 
k" ,7?^a 

+E{ E <(*T)«I» |*"7>-<* |F |A"»/(*"* ' ;C(8) 

+ E <(7*)«MO0>/(**';Y*) 
7 5^a,/S 

+ E{-Z<(7«)«k|i8«>+<7|7|/3>}/(ift/;cry) 
7^/3 M a 

+ E {- E <(7*)«Ma8>+<7| F|a)}/(M'; T/5) 

- E <(T*0«I»I^>/(*;T) 
7?*a,/3 

- E <(ftT)«Mo0>/(*';Y) 
7 ^ 0 

+E<(**0«MW(*";«) 

+{Z<(7*0«IH7/JM*'l^l^}/(*;a) 

7?^a 

-{E<(Y*)«M70M*mi8»/(*';a) 
7?^a 

+ { E <(*Y)«IHaT>-<*| V\a))f(k';P) 
7^/3 

- { L <(*'7)«M*y>-<*'l V\a)}f(k; 0) 

= £/(**';c#). (6) 

2. The Hartree-Fock Potential 
A great simplification in Figs. 4, 5, and 6 results 

from choosing V to be the Hartree-Fock potential FHF, 
denned by matrix elements 

<a|7Hp|6)=E<a»|»|(6n)«>. (7) 
w = l 

file:///v/cd
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FIG. 1. Diagrams corresponding to 
the terms of Eq. (10). (a) Diagrams 
for f(k;a) and f(kk';o>0). Diagrams 
(b), (c), and (d) correspond to the 
terms labeled (b), (c), and (d) in 
Eq. (10). 

\/ Ĵ/ 
(a) 

Equation (4) becomes 

£ - £ H F = Z (ap\v\(kk'U)f(kk';al3), (8) 

where 

£ H F = £ en+ £ <0yS)«M78>- T,(y\V\y) 
w=l 7<5 7=1 

= Z « . - i S < r | V | 7 > ; (9) 

while Eq. (5) for /(&; a) reduces to 

(e*- e«)/(*; a )+ Z <(T*)« | *| *'«>/(*'; 7) 

(a) ' (b) 

+ £ <G*y)«l«l*'«>/(*ft';/*Y) 
7.0.*' 

(c) 

+ £<(*y)«M*'*">/(*'*";*y) 

(d) 
= (E-E H p) / (* ;a ) . (10) 

The sums over unexcited states are no longer restricted 
because now there are additional terms arising from 
incomplete cancellations with the Hartree-Fock po
tential FHF. They correspond to diagrams in pertur
bation theory in which the exclusion principle is 
violated in the intermediate states.2 The terms of Eq. 
(10) are represented by diagrams in Fig. 1. The diagrams 
provide a connection with the corresponding terms of 
perturbation theory. In order to correspond more 
closely to the diagrams of Goldstone perturbation 
theory,3 the term (a) of Eq. (10) should be brought to 
the right-hand side and then the equation divided by 
(*<*— ejc+E—EHF). In Goldstone's theory, the energy 
denominator would be (ea— €&). The term (E—EUF) 
incorporates the summation of many higher order terms 
in perturbation theory and corresponds to inclusion of 
the third class of EPV (exclusion-principle violating) 
diagrams of Ref. 2. It is assumed in this paper that 
(E—E-RF) is not large relative to (ea— €&) and this 
assumption constitutes a restriction to finite systems. 

When V is chosen as FHF, Eq. (6) reduces to 

(€*+€V-ea-€ /i)/(**';oi8)+((ft*0«l«M> 
+ Z ((kk0~\v\VW'W(k"k"';ap) 

k"k"f 

(i) 
+ £<(Y*')«M*"/W*";cry) 

(ii) 
+ £<(*,Y)«M«*">/(*ft";,w3) 

(iii) 

+ JL((ykU\v\k"0}f(k"k';ay) 
k"y 

Cv) 
+ JL((ykU\v\k"a)f(k"k';yfi) 

h"y 

(v) 
+ E<(78)«M<tf>/(ft*';78) 

(vi) 

-£<Oy*O«l»|c0/(*;T) 

(vii) 

-E<(*Y)«|t>|a0>/(*';7) 
T 

(viii) 

+E<(**')«|v|*,//s>/(*,,;«) 

(ix) 

+£<(M')«Ma*'W;/s) 
J f c " 

(x) 
= ( E - E H F ) / ( * * ' ; O 0 ) . (11) 

Again, as in Eq. (10), the sums over hole states are 
unrestricted because of contributions from the po
tential FHF. The diagrams for Eq. (11) are given in 
Fig. 2. 

3. Higher Excitations 

The discussion so far has only included one- and 
two-particle excitations, and there are, of course, exci-
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FIG. 2. Diagrams corresponding to 
terms of Eq. (11). (a) Ladder diagram 
for term (i). (b) Ring diagram and 
hole-particle diagram of term (ii). 
The diagrams for (iii), (iv), and (v) 
are similar, (c) Hole-hole interaction 
diagram of term (vi). (d) Diagram 
for coupling of one-particle and two-
particle excitations of term (vii). The 
diagram for (viii) is similar, (e) 
Diagram for (ix) and (x). The ex
change diagrams for (c), (d), and (e) 
have been omitted. 

for f(k;a) and Eq. (6) for f(kk';ap), the three- and 
four-particle terms correspond to two higher orders of 
perturbation theory than do the lowest order terms. 
When N is not so large that the possible number of 
higher excitations can overcome the reductions due to 
terms reduced by two orders of perturbation theory, 
higher excitations are not expected to be very im
portant. 

When three-particle excitations are included, the term 

tations up to N particles. When higher excitations are 
included, Eq. (4) still involves only one- and two-
particle excitations directly. Equations (5) and (10) 
for f(k; a) must be modified to include coupling with 
f{kk'k")a$y) and Eqs. (6) and (11) for f(kk';a$) 
must include terms coupling with f(kk'k"; afiy) and 
f(kk,k"kr"; a0yd). The importance of higher excitations 
depends both on the size of the system and the "good
ness" of the single-particle wave functions used in the 
expansion. In perturbation theory, both one- and two-
particle excitations enter in first order. Three- and 
four-particle excitations enter in second order. When 
good single-particle wave functions are used, the matrix 
elements involving unexcited to excited states may be 
expected to be small, as found in Ref. 2. In Eq. (5) 

£ ( E ((ySU\v\k"S)-(y\V\k"))f(kk'k";afiy)- E ((y&U\v\pk")f(kk'k"iay6) 

+ E ((k'y)eMk"k'"}f(kk"k'";aPy)- £ <(75)Jt>|aft">/(**W';7|8S) 
7,&",&'" y,d^a;kf/ 

E <G»Y)« 
0,7.*'.&" 

\v\k,k")f{kk'k";aPy) (12) 

is added to the left-hand side (lhs) of Eqs. (5) and (10) 
for f(k;a). The following terms are added to the lhs 
of Eq. (6) due to triple excitations: 

Coupling with four-particle excitations adds the term 

E ((yd)eMk"VfV(kkW'k'"-,at3y8) (14) 

to the left-hand side of Eq. (6) for f(kkr; a/5). Equation 
(11) for f(kk';a(3), using F H F , is modified on the lhs 
by the last four terms of Eq. (13) (without restrictions 
on the sums over hole states) and by Eq. (14). 

The terms f(kk'k";apy) and f{kk'k"k"'; aj3yd) are 
determined from equations which are similar to Eqs. 
(5) and (6). When N is not large, it should be quite 
valid to truncate terms beyond four excitations in the 
equations for f(kk'k"; apy) and f(kk'k"k'"; a0y8) and 
to exclude all higher excitations. A simpler approxi
mation is to approximate three- and four-particle 
excitations by products of one- and two-particle 
excitations and to omit three-body and higher clusters, 
as has been discussed by Brenig and Sinanoglu.4 

4 O. Sinanoglu, T. Chem. Phys. 36, 706 (1962); W. Brenig, Nucl. 
Phys. 4, 363 (1957). 

+ E ((ky)eMk'W'y(k"k'k'";aPy). (13) 
y,k" ,k"' 

III. APPLICATIONS OF THE EQUATIONS TO 
ATOMIC STRUCTURE CALCULATIONS 

1. Solutions and Perturbation Theory 

The set of coupled equations (4), (5), and (6); or 
(8), (10), and (11) if F H F is used; may be solved for 
the ground-state energy E. That is, the matrix deter
mined by the complete set of equations must be 
diagonalized. The lowest eigenvalue is the ground-state 
energy and higher eigenvalues correspond to excited 
states with the same symmetry. The set has already 
been truncated because higher excitations have been 
omitted. The continuum may be divided into finite 
blocks such that the variation of / within any given 
block is small and the calculation is then reduced to 
that of a finite number of coupled equations provided a 
finite number of bound excited states is used. 

When F H F is used, the one-particle excitations f(k; a) 
are relatively unimportant compared to the two-
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particle excitations f(kk';a(3), and only the f(kkr\ct0) 
are needed to determine E—JEHF. 

The solution of Eq. (11) is, in the first approximation, 

f(kk'; ajff)= ( € a + e ^ ~ €&— €*' — ((ajff)«x| v|a0> 

+£-jEHp)-1<(** ,)ex|v|ai8>. (15) 

The term (a/3|fl|a/3) in Eq. (15) comes from the 
diagonal part of term (vi) of Eq. (11). I t is the same 
term used in Ref. 1 to shift all energy denominators of 
the terms in perturbation theory. I t might be expected 
on physical grounds because €«+€#—((ap)ex\v\ap) is 
just the effective two-particle energy for particles in 
states \a) and \$). The ladder diagram term (i) of Eq. 
(11) accounts for the interaction of two particles in 
states | k) and | kf). Since the states | k) are determined 
by a potential in which all the unexcited states are 
filled (in the H F case), there is also a correction to 
account for the fact that | k) and | k!) are propagating 
with | a) and \0) unoccupied. This correction comes 
from the terms y—$ in (ii) and (iv) of Eq. (11) and 
from terms y=a in (iii) and (v) of Eq. (11). These 
terms were called hole-particle EPV (exclusion principle 
violating) terms in Ref. 2 because they involve hole-
particle interactions (and exchange) in which the 
exclusion principle is violated in going from one hole 
state to the same hole state. 

In the numerical calculations on Be, it was found 
necessary to include certain terms beyond second order 
in perturbation theory, namely the ladder diagrams 
and the hole-particle EPV diagrams.5 If only these 
terms are retained, then Eq. (11) becomes 

f(kk';a(3) = D-l((kk')ex\v\«P), (16) 
where 

D=e*+e0— €k— ew—((a(3)ex\v\a0)+E—£HF 

- E {{kk%MVfknj(kfW")a$)/f{kV-,a0) 
k"kr" 

- E< ( # ' ) « I v I * " # / ( * * " ; cfi)/f(kkf; a/3) 
k" 

- S < ( * ' a ) « | v\ak")f(kk"; a0)/f(kk'; op) 
k" 

- E < G » ) « I v\ k"p)f(k"k'; c0)/f(kk';ap) 
k" 

-H{{akU\v\kna)j{kffkf; aft/f&V; off). (17) 
ft" 

The last four terms on the right-hand side of Eq. (17) 
are related to the expression (4a+26) which was used 
in Ref. 2 to sum the hole-particle EPV diagrams. The 
ladder term of Eq. (17) is related to the factor t of 
Ref. 2 which summed the ladder diagrams. Equations 

6 For example, the correlation energy among the 25 electrons 
was calculated to be —0.0285 a.u. in second order; when the 
ladder and hole-particle sums were included the 25 correlation 
energy was calculated to be —0.0439 a.u. 
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(16) and (17) are equivalent to the calculation of Ref. 
2. The necessary higher order terms of perturbation 
theory are thus seen to be included in the multiple-
particle excitation theory in a straightforward manner. 

The last five terms on the rhs of Eq. (17) may have 
a dependence on k and kf which simplifies the calcu
lations. This was found to be true in the numerical 
calculations for Be where each of the five terms could 
be written to a good approximation as Ci(ea+ep— ejc 
— €*;'—((aj8)ex|fl|ai3)), where d is an appropriate 
constant for the ith. term.2 

2. Application to Open-Shell Atoms 

Since the Hamiltonian H commutes with the total 
orbital and spin angular momentum operators L and S, 
the eigenstates for this Hamiltonian must be eigenstates 
of L2 and S2. The unperturbed eigenstate |<£0) should 
have the correct symmetry (in L and S) of the true 
ground state | if/) which may be written as 

|*>=|*o>+|A*>. (18) 

Equation (2) may be written as 

H=H0+v-V, (19) 

where v=y£i<jN(rij)-\ F = £ * - i * V(n), and #0|<l>o> 
= £o|$o). When Eqs. (18) and (19) are substituted 
into (1), there results: 

I A*>= (H-E)-'ZAE- (v- V)l | $0), (20) 

where AE=E—Eo. Since L and S commute with H 
and v, the calculated ground state |^) will be an 
eigenstate of L? and S2 if L and S commute with V 
and I <£>o) is an eigenstate of L2 and S2. For closed-shell 
atoms, F H F defined by Eq. (7) commutes with L and 
S and I $0) is a single determinant. 

For open-shell atoms L and S, in general, do not 
commute with F H F and so it is desirable to choose a 
V(r) which approximates F H F as closely as possible 
but which commutes with L and S. As described in 
Sec. I I .1 , it is convenient but not necessary that |$o) 
be described by a single determinant. In calculating 
the ground state of many open-shell atoms it is possible 
to choose |<£o) as a single determinant because the 
ground state usually has the maximum spin consistent 
with the exclusion principle. The energy is independent 
of ML and Ms and the choice ML= L and Ms=S often 
makes | $0) a single determinant. 

Calculations for open-shell atoms, using Eqs. (4), 
(5), and (6), are planned. The numerical work described 
in Ref. 2 indicates the feasibility of these calculations. 
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